Problem E: Grid Successors

Consider a 3×3 grid of numbers g where each cell contains either a 0 or a 1. We define a function f that transforms such a grid: each cell of the grid $f(g)$ is the sum (modulo 2) of its adjacent cells in g (two cells are considered adjacent if and only if they share a common side).

Furthermore, we define $f^{(i)}(g)$ recursively as $f^{(0)}(g)=g$ and $f^{(i+1)}(g)=$ $f\left(f^{(i)}(g)\right.$) (where $i \geq 0$). Finally, for any grid h, let $k_{g}(h)$ be the number of indices i such that $h=f^{(i)}(g)$ (we may have $k_{g}(h)=\infty$). Given a grid g, your task is to compute the greatest index i such that $k_{g}\left(f^{(i)}(g)\right)$ is finite.

Input begins with the number of test cases on its own line. Each case
 consists of a blank line followed by three lines of three characters, each either 1 or 0 . The j 'th character of the i 'th row of the test case is the value in the j^{\prime} th cell of the i 'th row of the grid g.

For each test case, output the greatest index i such that $k_{g}\left(f^{(i)}(g)\right)$ is finite. If there is no such index, output -1 .

Sample input

3
111
100
001

101
000
101
000
000
000

Sample output

3
0
-1

Babak Behsaz and Zachary Friggstad

