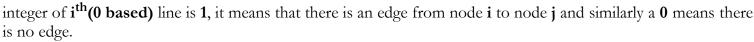
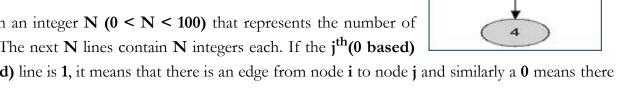


Dominator

In graph theory, a node X dominates a node Y if every path from the predefined start node to Y must go through **X**. If **Y** is not reachable from the start node then node **Y** does not have any dominator. By definition, every node reachable from the start node dominates itself. In this problem, you will be given a directed graph and you have


to find the dominators of every node where the 0th node is the start node.


As an example, for the graph shown right, 3 dominates 4 since all the paths from 0 to 4 must pass through 3. 1 doesn't dominate 3 since there is a path 0-2-3 that doesn't include 1.

Input

The first line of input will contain $T \leq 100$ denoting the number of cases.

Each case starts with an integer N (0 < N < 100) that represents the number of nodes in the graph. The next N lines contain N integers each. If the jth(0 based)

Output

For each case, output the case number first. Then output 2N+1 lines that summarizes the dominator relationship between every pair of nodes. If node A dominates node B, output 'Y' in cell (A, B), otherwise output 'N'. Cell (A, B) means cell at Ath row and Bth column. Surround the output with 1, + and - to make it more legible. Look at the samples for exact format.

Sample Input	Output for Sample Input
2 5 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1	Case 1: ++ Y Y Y Y Y ++ N Y N N N ++ N N Y N N ++ N N N Y Y ++ N N N Y Y ++ Case 2: +-+ Y +-+

Problem Setter: Sohel Hafiz, Special Thanks: Kazi Rakibul Hossain, Jane Alam Jan