ACM ICPC

- Teams set?
- · Seven rooms reserved
- Checking on vans (2); need backup drivers
- Maintain your profile at Baylor site*
- Need to set date/time for practice contest* Remaining..
 - Friday, Oct 16 @ 6pm
 - Monday, Oct 19 @ 6pm
 - Friday, Oct 23 @ 6pm
 - Sunday, Oct 25@ 12pm

Upcoming Schedule

- Oct 6 (today) Number Theory
- Oct 13 October break
- Oct 20 Backtracking
- Oct 27 Graph Traversal (Zhanibek)
- Nov 3 Graph Algorithms (Atallah?)
- Nov 10 Dynamic Programming
- Nov 17 Grids
- Nov 24 no class

^{*}See my homepage or Facebook group for links

Today's Topic

- Number theory
- Concepts to know
 - Prime numbers
 - Divisibility
 - Modular arithmetic
 - Congruences

Prime Numbers

- Prime factorizations are unique "fundamental theorem of arithmetic"
- Finding primes by repeated division

Divisibility

- Equivalent, for integers a and b...
 - a | b ("a divides b")
 - b % a == 0
 - a*k == b, for some integer k
- Greatest Common Divisor, gcd
 - Euclid's algorithm
 - a * x + b * y = gcd(a,b)
- Least Common Multiple, lcm lcm(x, y) = x*y/gcd(x, y)

Modular Arithmetic

- Allows some computations without bignums
- Useful identities

$$(x + y) \% n == ((x \% n) + (y \% n)) \% n$$

 $(x - y) \% n == ((x \% n) - (y \% n)) \% n$
 $-x \% n == (n-x) \% n$
 $(x * y) \% n == ((x \% n) * (y \% n)) \% n$

• Example: Finding the last digit of 2¹⁰⁰

Congruences

- Alternative notation for modular arithmetic
- Equivalent, for integers a, b, and n

```
a \equiv b \pmod{n}

a \% n == b

n \mid (a - b)
```

- Addition, subtraction, multiplication "work" preserving modulus
- Division: OK to divide out common factors of all three numbers, a, b, and n

Solving Linear Congruences

Given integers a, b, and n, solve
 ax = b (mod n)
 for x.

Other Hints

- Java: No unsigned, watch for long vs int
- BigInteger in Java includes
 - gcd
 - modPow
 - modInverse
 - isProbablePrime
- UNIX is your friend
 - factor command
 - bc arbitrary precision calculator

Today's Problems

- 110701 Light, More Light
- 110702 Carmichael Numbers
 - "Presentation Error" bug (?) on PC site
- 110703 Euclid Problem
 - Use "extended Euclid algorithm", e.g., from text
- 110704 Factovisors

Today's Problems -- Hints

- 110701 Light, More Light
 - Brute force or counting divisors = timeout
 - Need trick: no loops (!)
- 110702 Carmichael Numbers
 - BigInteger works, but not needed (try without)
- 110703 Euclid Problem
 - Use "extended Euclid algorithm", e.g., from text
- 110704 Factovisors
 - Factor m; count primes in n!