This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore
for allowing Steven to prepare and distribute these teaching materials.

=

QGDD

International Collegiate
cm Programming Contest

CS3233 EE o
Competitive Programming

Dr. Steven Halim

Week 02 — Data Structures & Libraries
Focus on Bit Manipulation & Binary Indexed Tree

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline

Mini Contest 1 + Break (discussion of A/B)
Some Admins

Data Structures With Built-in Libraries
— Just a quick walkthrough

* Read/experiment with the details on your own
— Linear Data Structures (CS1010/1%t half of C52020)

— Non Linear Data Structures (CS2010/2" half of C52020)
* Focus on the red highlights

“Top Coder” Coding Style (overview) + Break
Data Structures With Our-Own Libraries

— Focus on Binary Indexed (Fenwick) Tree

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

LINEAR DATA STRUCTURES
WITH BUILT-IN LIBRARIES

| am...

1. A pure C coder

2. A pure C++ coder

3. A mix between

C/C++ coder

4. A pure Java coder

. A multilingual
coder: C/C++/Java

0 0

C53233] Competitive Programming, 2 3 4 5
0 of 120 Stgven Halim, SoC, NUS

Linear DS + Built-In Libraries (1)

1. Static Array, built-in support in C/C++/Java

2. Resize-able: C++ STL vector, Java Vector
— Both are very useful in ICPCs/IOls

 There are 2 very common operations on Array:
— Sorting
— Searching
— Let’s take a look at efficient ways to do them

SORTING + SEARCHING
INVOLVING ARRAY

Sorting (1)

e Definition:
— Given unsorted stuffs, sort them... *

 Popular Sorting Algorithms
— O(n?) algorithms: Bubble/Selection/Insertion Sort
— O(n log n) algorithms: Merge/Quick”/Heap Sort
— Special purpose: Counting/Radix/Bucket Sort

* Reference:
— http://en.wikipedia.org/wiki/Sorting algorithm

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Sorting (2)

In ICPC, you can “forget” all these...

— In general, if you need to sort something...,
just use the O(n log n) sorting library:

e C++ STL algorithm:: sort

e Java Collections.sort

nr¥ingo ic +hor iicod ac nroli
Ortirig 15 LIICT UuSEU as |

In lCPC
i il

for more complex algorithm or to beautify output

— Familiarity with sorting libraries is a must!

Sorting (3)

e Sorting routines in C++ STL algorithm

— sort — a bug-free implementation of introsort*
e Fast, it runs in O(n log n)

e Can sort basic data types (ints, doubles, chars), Abstract
Data Types (C++ class), multi-field sorting (= 2 criteria)

— partial_sort — implementation of heapsort
e Can do O(k log n) sorting, if we just need top-k sorted!

— stable sort

 |f you need to have the sorting ‘stable’, keys with same
values appear in the same order as in input

Searching in Array

Two variants:

— When the array is sorted versus not sorted

Must do O(n) linear scan if not sorted - trivial
Can use O(log n) binary search when sorted

— PS: must run an O(n log n) sorting algorithm once

Binary search is ‘tricky’ to code!

— Instead, use C++ STL algorithm::lower_bound

Linear DS + Built-In Libraries (2)

3. Array of Boolean: C++ STL bitset

— Faster than array of bools or vector<bool>!
— No specific APl in Java that is similar to this

4. Bitmask

— a.k.a. lightweight set of Boolean or bit string
— Explanation via: *

http://www.comp.nus.edu.sg/~stevenha/visualization/bitmask.html

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Linear DS + Built-In Libraries (3)

5. Linked List, C++ STL list, Java LinkedList

— Usually not used in ICPCs/IQOls

— If you need a resizeable “list”, just use vector!
6. Stack, C++ STL stack, Java Stack

— Used by default in Recursion, Postfix Calculation,
Bracket Matching, etc

/. Queue, C++ STL queue, Java Queue

— Used in Breadth First Search, Topological Sort, etc
— PS: Deque, used in ‘Sliding Window’ algorithm *

NON-LINEAR DATA STRUCTURES
WITH BUILT-IN LIBRARIES

& hinary searchtree of size 9and &

o ADT Table (key % data) :ist:l:.Withrcll:-tﬂandleaves1,4,?

e Binary Search Tree (BST)

— Advertised O(log n) for insert, search, and delete

— Requirement: the BST must be balanced!
e AVL tree, Red-Black Tree, etc... *argh*

e Fret not, just use: C++ STL map (Java TreeMap)
— UVa 10226 (Hardwood Species)*

& hinary searchtree of size 9and &

® ADT Table (key eXIStS or nOt) :ist:l:.Withrcll:-tﬂandleaves1,4,?

e Set (Single Set)
— C++ STL set, similar to C++ STL map

 map stores a (key, data) pair
e set stores just the key

— In Java: TreeSet
 Example:
— UVa 11849 - CD

Heap [OROJORO.

Example of & full hinary max heap

* Heap
— C++ STL algorithm has some heap algorithms
e partial _sort uses heapsort
— C++ STL priority_queue (Java PriorityQueue) is heap

* Prim’s and Dijkstra’s algorithms use priority queue

 But, we rarely see pure heap problems in ICPC

Keys Indexes Key-value pairs

(records)
0
John Smith T — Lisa Smith |+ 1-555-8976
Hash Table ARepa
Lisa Smith >< == Jahn Smith |+ 1-555-1234
pu—— - I e | +1-555-5030

.................................. 999

® H a S h Ta b | e A =mall phone book &z & hash takle.

— Advertised O(1) for insert, search, and delete, but:

 The hash function must be good!
e There is no Hash Table in C++ STL (d in Java API)

— Nevertheless, O(log n) using map is usually ok

e Direct Addressing Table (DAT)
— Rather than hashing, we more frequently use DAT
— UVa 11340 (Newspaper)

Top Coder Coding Style

SUPPLEMENTARY

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Top Coder Coding Style (1)

* You may want to follow this coding style (C++)

1. Include important headers ©

— #include <algorithm>
— #include <cmath>

— #include <cstdio>

— #include <cstring>

— #include <iostream>
— #include <map>

Want More?

Add libraries that you frequently
use into this template, e.qg.:

— #include <queue> ctype.h
— #include <set> bitset
— #include <string>

— #include <vector> etc

— using namespace std;

Top Coder Coding Style (2)

2. Use shortcuts for common data types

— typedef long long il;
— typedef vector<int> Vi ;
— typedef pair<int, Int> ii;
— typedef vector<ii> VIl;
3. Slmpllfy Repetitions/Loops!
#define REP(1, a, b) for (|nt 1 = Int(a); 1 <= int(b); 1++)
— #define REPN(i, n) REP (i, 1, int(n))
— #define REPD(1, a, b) for (int 1 = int(a); 1 >= int(b); i--)

— #define TRvi(c, 1t) \

for (vi::iterator it = (c).begin(); it !'= (c).end(); it++)
— #define TRvii(c, 1t) \

for (vii::iterator it = (c).begin(); it = (c).end(); i1t++)

Define your own loops
style and stick with it!

Top Coder Coding Style (3)

4. More shortcuts

— Ffor (i = ans = 0; 1 < nj; 1+t+).. // do variable assignment in for loop
— while (scanf(%d", n), n) { .. // read i1nput + do value test together
— while (scanf("%d", n) = EOF) { .. // read input and do EOF test

5. STL/lerarles all the way!

i1salpha (ctype.h)

« inline bool isletter(char c) {
return (c>="A"&&c<="Z")]|(c>="a"&&c<="z"); }

— abs (math.h)
« 1nline int abs(int a) { return a >= 0 ? a - -a; }
— pow (math.h)
« Int power(int a, int b) {
int res=1; for (; b>=1; b--) res*=a; return res; }
— Use STL data structures: vector, stack, queue, priority _queue, map, set, etc
— Use STL algorithms: sort, lower_bound, max, min, max_element, next_permutation, etc

Top Coder Coding Style (4)

6. Use I/O Redirection

int main() {
// freopen(input.txt™, "r", stdin); // don"t retype test cases!
// freopen('output.txt'”, "w', stdout);
scant and printf as per normal; // 1 prefer scanf/printf than
// cin/cout, C style is much easier

7. Use memset/assign/constructor effectively!

memset(dist, 127, sizeof(dist));
// useful to Initialize shortest path distances, set INF to 127!

memset(dp_memo, -1, sizeof(dp_memo));
// useful to initialize DP memoization table

memset(arr, 0, sizeof(arr)); // useful to clear array of integers
vector<int> dist(v, 2000000000);
dist.assign(v, -1);

Top Coder Coding Style (5)

8. Declare (large) static DS as global variable

— Allinput size is known, declare data structure size LARGER than needed to avoid silly bugs
— Avoid dynamic data structures that involve pointers, etc
— Use global variable to reduce “stack size” issue

* Now our coding tasks are much simpler ©

 Typing less code = shorter coding time
= better rank in programming contests ©

Quick Check

1. | can cope with this
pace...

2. | am lost with so
many new
information in the
past few slides

= -

C53233 J Competitive Programmingl 2
0 of 120 Stgven Halim, SoC, NUS

5 Minutes Break

One data structures without built-in libraries

will be discussed in the last part...
— Binary Indexed (Fenwick) Tree
— Graph, Union-Find Disjoint Sets, and Segment Tree
are not discussed in this year’s CS3233 Week02
e Graph DS is covered in details in CS2010/CS2020

e UFDS is covered briefly in C52010/CS2020
e Please study Segment Tree on your own

— We try not set any contest problem involving Segment Tree

Time Check:
8.30pm

Graph (not discussed today, revisited in Week05/08)
Union-Find Disjoint Sets (not discussed today, read Ch2 on your own)

Segment Tree (not discussed today, read Ch2 on your own)

Fenwick Tree (discussed today)

DATA STRUCTURES
WITHOUT BUILT-IN LIBRARIES

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Fenwick Tree (1)

e Cumulative Frequency Table
— Example, s ={2,4,5,5,6,6,6,7,7,8} (already sorted)

Index/Score/Symbol Cumulative Frequency

0 0 0

O N O U1 A W N -
R N W N B O -, O
N 2 = O

Fenwick Tree (2)

 Fenwick Tree (inventor = Peter M. Fenwick)

ey S R

O 00 N o U B W N B

— Also known as “Binary Indexed Tree”, very aptly named

— Implemented as an array, let call the array name as ft
e Each index of ft is responsible for certain range (see diagram)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

N/A
1
1..2
3
1.4

N/A

o

O B N W N B O B

N/A
0

© N AN BB R

N/A
0

N U1 NN O

Do you notice
any particular pattern?

10

1_&@ injj 2

Analysis:
This is
O(log n)

Why?

Fenwick Tree (3)

— To get the cumulative frequency from index 1 to b,
use Ft_rsq(ft, b)
 The answer is the sum of sub-frequencies stored in array Tt with
indices related to b via this formulab®™ = b - LSOne(b)
— Recall that LSOne(b) = b & (-b)
» That is, strip the least significant bit of b
e Apply this formula iteratively until b is O
— Example: ft_rsq(ft, 6)
» b=6=0110, b’ = b - LSOne(b) = 0110 - 0010, b' = 4 = 0100
» b'=4=0100,b” = b’ - LSOne(b’) = 0100 - 0100, b" = 0, stop

— Sum ft[6] + ft[4] =5+2=7

10

(see the blue area [2] E

that covers range [7
1..4] + [5..6] = [1..6
[1..4] + [5..6] = [1..6]) ? —&@

Fenwick Tree (4)

— To get the cumulative frequency from index a to b,

Analysis:
This is
O(2logn) =
O(log n)

Why?

use Ft_rsq(ft, a, b)

e [fais not one, we can use:
t rsq(ft, b) — ft _rsq(ft, a - 1)
to get the answer
— Example: ft_rsq(ft, 3, 6) =

ft rsq(ft, 6) — ft rsq(ft, 3 — 1) =
ft_rsq(ft, 6) — ft _rsq(ft, 2) =
blue area minus green area =
(5+2)-(0+1)=
7-1=6

10

[Q 1_1@

Fenwick Tree (5)

— To update the frequency of an key/index K, by Vv (either
positive or negative), use ft_adjust(ft, k, V)

* Indices that are related to kvia k™ = k + LSOne(k)
will be updated by v when k < ft.si1ze()

— Example: Tt_adjust(ft, 5, 2)

Analysis: » k=5=0101, k' = k + LSOne(k) = 0101 + 0001, k' = 6 = 0110

This Is also » k'=6=0110, k" = k' + LSOne(k') = 0110 + 0010, k" = 8 = 1000

O(log n) » And so on while k < ft.size()

Why? e Observe that the dotted red line in the figure below stabs through

the ranges that are under the responsibility of indices 5, 6, and 8

— ft[5], 2 updated to 4

10

[
— ft[6], 5 updated to 7 [=] I

— ft[8], 10 updated to 12 .
| 1 5 |
=3

[;
2

i

5

2
|
6 7

&

9

Fenwick Tree (6) — Library

typedef vector<int> vi;
#define LSOne(S) (S & (-5))

void ft_create(vi &ft, int n) { ft.assign(n + 1, 0); } // init: n+l zeroes

int ¥t _rsqg(const vi &ft, int b) { // returns RSQ(1, b)
int sum = 0; for (; b; b -= LSOne(b)) sum += ft[b];
return sum; }

int ft_rsq(const vi &t, int a, Int b) { // returns RSQ(a, b)
return ft_ rsq(t, b) - (a==17?0 : ft rsq(t, a - 1)); }

// adjusts value of the k-th element by v (v can be +ve/inc or -ve/dec)
void ft_adjust(vi &ft, Int k, int v) {
for (; k < (int)ft.size(); k += LSOne(k)) ft[k] += v; }

CS3233 - Competitive Programming,

Steven Halim, SoC, NUS FT/BIT is in 101 syllabus!

Fenwick Tree (7) — Application

 Fenwick Tree is very suitable for dynamic RSQs
(cumulative frequency table) where each update
occurs on a certain index only

* Now, think of potential real-life applications!

— http://uhunt.felix-halim.net/id/32900
— Consider code running time of [0.000 - 9.999]
for a particular UVa problem
e There are up to 9+ million submissions/codes

— About thousands submissions per problem

e If your code runsin 0.342 secs, what is your rank?

e How to use Fenwick Tree to deal with this problem? *

Quick Check

| am lost with Fenwick Tree

| understand the basics of
Fenwick Tree, but since this
is new for me, | may/may
not be able to recognize
problems solvable with FT

| have solved several FT-
related problems before

0

C53233 J Competitive Prograniming, 2 3
0 of 120 Stkven Halim, SoC, NUS

Summary

 There are a lot of great Data Structures out there

— We need the most efficient one for our problem
o Different DS suits different problem!

 Many of them have built-in libraries

— For some others, we have to build our own (focus on FT)

e Study these libraries! Do not rebuild them during contests!

e From Week03 onwards and future ICPCs/IOls,
use C++ STL and/or Java APl and our built-in libraries!

— Now, your team should be in rank 30-45 (from 60)
(still solving ~1-2 problems out of 10, but faster)

