Problem D	Bar Codes
Time Limit	1 Second

A bar-code symbol consists of alternating dark and light bars, starting with a dark bar on the left. Each bar is a number of units wide. Figure 1 shows a bar-code symbol consisting of 4 bars that extend over $1+2+3+1=7$ units.

Figure 1: Bar-code over 7 units with 4 bars
In general, the bar code $\mathbf{B C}(\mathbf{n}, \mathbf{k}, \mathbf{m})$ is the set of all symbols with \mathbf{k} bars that together extend over exactly \mathbf{n} units, each bar being at most \mathbf{m} units wide. For instance, the symbol in Figure 1 belongs to $\mathrm{BC}(7,4,3)$ but not to $\mathrm{BC}(7,4,2)$. Figure 2 shows all 16 symbols in $\mathrm{BC}(7,4,3)$. Each `1 ' represents a dark unit, each` 0 ' a light unit.

| $0: 1000100$ | $4: 1001110$ | $8:$ | 1100100 | $12:$ | 1101110 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1:$ | 1000110 | $5: 1011000$ | $9:$ | 1100110 | $13:$ | 1110010 |
| $2: 1001000$ | $6: 1011100$ | $10:$ | 1101000 | $14:$ | 1110100 | |
| $3: 1001100$ | $7:$ | 1100010 | $11:$ | 1101100 | $15:$ | 1110110 |

Figure 2: All symbols of $\mathrm{BC}(7,4,3)$

Input

Each input will contain three positive integers \mathbf{n}, \mathbf{k}, and $\mathbf{m}(1 \leq \mathbf{n}, \mathbf{k}, \mathbf{m} \leq 50)$.

Output

For each input print the total number of symbols in $\mathbf{B C}(\mathbf{n}, \mathbf{k}, \mathbf{m})$. Output will fit in 64-bit signed integer.
\(\left.\begin{array}{|ll|l|}\hline Sample Input \& Output for Sample Input

\hline 7 \& 4 \& 3

7 \& 4 \& 2\end{array}\right]\)| 16 |
| :--- |

Collected (Slightly Modified by Md. Kamruzzaman)

